Canku Ota Logo
Canku Ota
Canku Ota Logo
(Many Paths)
An Online Newsletter Celebrating Native America
pictograph divider
Sentinels Of Change:
Gray Whales In The Arctic
by Amelia Brower - Joint Institute for the Study of the Atmosphere and Ocean
credits: {credits}
Aerial view of a gray whale near the ice edge with mud plume from bottom feeding. Photo credit: Vicki Beaver, NOAA Fisheries. NMFS Permit No. 14245. Funded by the Bureau of Ocean Energy Management (IA Contract No. M11PG00033).

Gray whales do things differently.

Gray whales look different, swim farther, and fight more fiercely than other whales.

They owe their distinctive mottled look to a coat of crustaceans that can weigh up to 400 pounds. Their swim from Alaska to Baja and back may be the longest annual migration of any mammal. And they were named “devilfish” by whalers who watched them charge and smash boats to defend themselves and their calves.

But perhaps what sets gray whales apart most is their eating habits. Gray whales are the only baleen whales that feed primarily on the bottom of the ocean.

Other baleen whales strain plankton from the water column. A gray whale dives to the bottom, turns on its side, scoops the top inches of sediment into its mouth, and strains small animals from it, especially amphipods, small shrimp-like creatures that are the favorite food of gray whales in the Arctic. A telltale plume of mud shows where a gray whale fed on the bottom.

That’s what gray whales usually do. But scientists have learned that with gray whales, you can’t count on usual. Most migrate, but some don’t. And most gray whales bottom feed, but if there is better eating in the water column, they will feed there instead.

It may be this flexible, opportunistic approach to life that has kept the species swimming through multiple warming and cooling phases during their 2.5 million years on the planet.

That’s why marine mammal scientist Amelia Brower is keeping an eye on them.

“Climate change is real and it’s happening fast. The Arctic is the area of the world that is changing fastest. Comparing where gray whales are and how they behave over time may provide insight into how the ecosystem is changing,” says Brower. “Gray whales may be important sentinels of ecosystem changes to come.”

A Moveable Feast

Climate warming affects high latitudes faster and more dramatically than the rest of the earth. Melting away the sea ice cover exposes more ocean area and alters the entire ecosystem.

One way that sea ice affects the ecosystem is through its influence on the spring bloom of phytoplankton, microscopic algae that are the base of the ocean food web.

Loss of sea ice changes the ecosystem from the bottom up.

In cold years ice cover remains until late spring. Sea ice and meltwater stabilize the water column, creating a clear, nutrient-rich surface layer, which, combined with increasing light, sets the stage for an intense phytoplankton bloom that follows the retreating ice edge. Zooplankton are not yet ready to graze, so most of the phytoplankton sinks to the bottom, where it is eaten by bottom-dwelling creatures, including amphipods.

In warm years, sea ice melts early in the spring, before there is enough light to fuel an intense phytoplankton bloom. Melting ice exposes the surface of the ocean to winds that mix the water layers, disrupting the stratification that keeps nutrients and phytoplankton in the light zone. The bloom is less productive and happens later, when hungry zooplankton are present and ready to eat; most of the phytoplankton are grazed before they sink to the bottom, leaving little for the bottom-dwelling amphipods.

If it gets warm enough for this to happen in the Arctic, gray whales may shift their banquet from the bottom to feed on zooplankton in the water column, or they may move elsewhere to find other food.

So Brower is watching them. As part of the Aerial Surveys of Arctic Marine Mammals project, she and her team fly over the northeastern Chukchi Sea to see where gray whales are, where they are bottom-feeding, and how they behave. She records when they breach, dive, feed, flipper slap, log play, mate, mill, rest, roll, spy hop, swim, tail slap, thrash, or blow under water. She compares this data with information on amphipod distributions.

“The most exciting thing about this research is being in the airplane. The sea ice is beautiful, I get to see the animals, and I’m working in the area of the world that is changing the fastest.”

If gray whales can change with it, it bodes well for their future–and may help us to better understand ours.

Because as Brower says, “Everything is connected. All the ecosystems around the globe. What happens in the Arctic will affect the rest of the world.”

pictograph divider

The Joint Institute for the Study of the Atmosphere and Ocean
The Joint Institute for the Study of the Atmosphere & Ocean in the College of the Environment at the University of Washington is among the largest and oldest of NOAA’s Cooperative Institutes. In collaboration with NOAA and university researchers, JISAO scientists are at the forefront of basic and applied investigations on such critical issues as climate change and its impacts on humans and ecosystems, ocean acidification, fisheries assessments and tsunami modeling and forecasting.

pictograph divider
Home PageFront PageArchivesOur AwardsAbout Us
Kid's PageColoring BookCool LinksGuest BookEmail Us
pictograph divider
  Canku Ota is a free Newsletter celebrating Native America, its traditions and accomplishments . We do not provide subscriber or visitor names to anyone. Some articles presented in Canku Ota may contain copyright material. We have received appropriate permissions for republishing any articles. Material appearing here is distributed without profit or monetary gain to those who have expressed an interest. This is in accordance with Title 17 U.S.C. Section 107.  
Canku Ota is a copyright © 2000 - 2016 of Vicki Williams Barry and Paul Barry.
Canku Ota Logo   Canku Ota Logo
The "Canku Ota - A Newsletter Celebrating Native America" web site and its design is the
Copyright © 1999 - 2016 of Paul C. Barry.
All Rights Reserved.

Site Meter
Thank You

Valid HTML 4.01!